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‡6 Ptolemy’s Backwardness
Further Evidence That Ptolemy Didn’t Deduce

His Parameters from Observations

by Hugh Thurston1

A The Backwards Approach
A1 Imagine that you are a physics student finding the specific heat of lead. You
desperately want high marks for your experiment. You can easily look up the specific
heat and calculate what the thermometer in your experiment should read. If you record
this calculated temperature instead of actually reading the thermometer, your result will be
Excellent. That would be cheating, of course; but students have been known to do it. This
type of fraud is called “working backwards from the answer.”
A2 Delambre 1819 (pp.lxvij-lxix) showed that Ptolemy did precisely this. In the Syn-
taxis (3.1), Ptolemy claimed that he calculated the length of the year from firsthand-observed
equinox and solstice times and dates. These four “observations”, long known to be highly
inaccurate (most are over 30 hours late! [see below: ‡7 §C3 & fn 14]) and long suspected
to be fabricated, were in fact obtained by working backwards from the answer: plugging
a previously-known (Hipparchus’s) value for the length of the year into earlier equinox &
solstice times yields precisely the times and dates that Ptolemy said he observed. Robert
R. Newton rediscovered this and found several other examples of backwards working by
Ptolemy. (See R.Newton 1977.)2

B Successive Approximation
B1 In Books 10 and 11 of the Syntaxis, Ptolemy used a well-known technique called
“successive approximation”. We use this technique when we have a problem that we can’t
solve exactly. If we can, by one means or another, find an approximate solution, we use
this approximation to find a closer approximation, then use this to find an even closer one,
and so on.

1 Hugh Thurston holds a PhD in mathematics from Cambridge University, England. He is currently professor
emeritus of mathematics at the University of British Columbia, Vancouver, Canada. His original mathematical
discoveries in ancient astronomy have appeared in Griffith Observer, Archive for History of Exact Sciences, &
Journal for the History of Astronomy. Favorably reviewed by the Royal Society’s Desmond King-Hele in Nature
370:339-340 (1994/8/4), Thurston’s successful 1994 book, Early Astronomy (published thanks heavily to the interest
and discrimination of Thos. von Foerster, Springer-Verlag’s Math-Physics Senior Editor), is the broadest careful
investigation of pre-modern astronomy carried out by a professional mathematician in over a century (since Delambre’s
early 19th century work), covering not only Greek & Babylonian astronomy but: Chinese, Indian, Arabic, Mayan, &
Renaissance. Among others.

2 Note added by DR: See also Rawlins 1987 p.236 item 5 for proof (by a quite independent approach) that
Ptolemy’s mean motion of Mercury existed before the data he adduces to prove it. (For van der Waerden’s comment
on this simple demonstration, see DIO 1.1 ‡6 fn 37. See, too, DIO 1.2 fnn 16&166, and DIO 2.1 ‡3 §C15.)
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B2 A wonderful successive-approximation scheme for finding square roots appears to
go back to Archimedes. (See Heath 1921 2:325.) The method is nicely explained in the
final appendix to R.Newton’s final book (R.Newton 1985 p.255):
“Suppose we want the square root of a number N . Let n be any approximation to

√
N .

Then [n + (N/n)]/2 is a better approximation. That is, we divide any approximation n
into N and take the average of n and the quotient. The average is a better approximation.
In fact, if n and N/n agree to k significant figures, the average is accurate to 2k significant
figures. Thus the process converges rapidly.”
B3 (The widely-believed convergence rule here stated is over-simplified. The actual
rule is: if the error in n is e, then the error3 in [n + (N/n)]/2 is e2/2n.)
B4 If we use this method to compute the square root of 2, starting with 1 1/2 for the first
approximation, we will get the successive approximations:

3/2, 17/12, 577/408

(In just 3 iterations, we have a value good to 1.5 parts in a million. Which explains why
— though “successive approximation” sounds fuzzy — the technique is so powerfully
attractive.)
B5 Note that the approximations get less and less round as the sequence continues. This
phenomenon is characteristic of successive approximation.

C Ptolemy’s Orbital Successive Approximations
C1 Ptolemy used successive approximation to find the eccentricities of the outer planets.
He started with purported observations of three oppositions to the mean Sun. (You’ll find
illustrations, if you want them, in Thurston 1994E pp.166-167, Figs.6.30-6.32.) At such
an opposition the planet, the centre C of its epicycle, and the Earth T are in one straight
line. (See ibid Fig.6.30.) Therefore, if C1, C2, & C3 are the three opposition-positions of
C, and E is the equant-point, then (since motion is uniform around E in the equant model
Ptolemy adopted), the time-intervals between the oppositions give the angles C1EC2 and
C2EC3. (See ibid Fig.6.31.) The observed longitudes of the planet give the angles C1TC2

and C2TC3. (See ibid Fig.6.32.)
C2 Problem: to calculate the distance ET . Of course, we can’t find absolute distances,
only ratios. But Ptolemy took the radius of the circle on which C moves to be 60, enabling
him to give a value to ET . The ratio of ET to this radius is sometimes called the
eccentricity.4

C3 Solution: let Z1, Z2, & Z3 be the points where the lines EC1, EC2, & EC3 intersect
another circle of radius 60 (the dashed circle in Fig.6.32 of ibid), whose center is E (the
equant point). If Ptolemy knew the angles Z1TZ2, Z2TZ3, Z1EZ2, & Z2EZ3, then he
could, by a long but straightforward piece of Euclid-plus-chord-table geometry, find ET .
(See Syntaxis 10.7 or Thurston 1994E App.5 for details. See also Hill 1900 and Rawlins
1987 n.25.) He did know Z1EZ2 & Z2EZ3: they are equal to C1EC2, & C2EC3. But
he didn’t know Z1TZ2 & Z2TZ3. However, these two angles are not much different from
C1TC2 & C2TC3, which for each outer planet are allegedly (§C1) known from opposition
observations — e.g., for Mars (Syntaxis 10.7): 67◦50′ & 93◦44′.
C4 So he calculated what ET would be if Z1TZ2 & Z2TZ3 were 67◦50′ & 93◦44′,
and he got ET = 13;7. (This is notational shorthand for 13 + 7/60, which, for a circle
of radius 60, constitutes an eccentricity = [13 + 7/60]/60 = 0.219.) At the same time, he
calculated the direction of the apogee. These two basic parameters aren’t exact because his
input data aren’t exact. But they are close, because the data are close.

3 Note that this is not an upper limit on the error but rather an exact expression for it.
4 This eccentricity should not be confused with the eccentricity of an ellipse. If a Greek orbit is the best

approximation to a Keplerian ellipse’s longitudinal motion, then the Greek eccentricity will be twice the eccentricity
of the elliptical orbit. E.g., for Mars: Greek eccentricity = 1/5; elliptic eccentricity = 1/10.
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C5 Now knowing the basic parameters of this 1st-approximation orbit, he knew the
motion of C (on it) completely and could calculate anything he liked in this orbit, including
Z1TZ2 & Z2TZ3. The results won’t be exact, because the parameters aren’t exact; but
they’ll be better than his first crude approximation of (§C3) setting them equal to C1TC2

& C2TC3.
C6 With these better values for Z1TZ2 & Z2TZ3, he repeated the §C3 calculation and
now got a better value for eccentricity ET . This in turn led him to better values for Z1TZ2

& Z2TZ3, and these gave him a yet better value for ET . Here he stopped.
C7 He used the same method for Jupiter and Saturn, except that (because their orbits’
eccentricities are much lower than Mars’) he needed to compute only two approximation-
iterations instead of three.

D Ptolemy’s Roundings: in Reverse
D1 As the steps progress, do Ptolemy’s approximations get less round, as they should?
They do not. The values for ET are (Syntaxis 10.7, 11.1, 11.5, respectively):

Mars 13 7/60, 11 5/6, 12. Jupiter 5 23/60, 5 1/2. Saturn 7 2/15, 6 5/6.

D2 No-one who has done much successive approximation will find these results plau-
sible. They are what would be expected in working backwards from the neatly rounded
answers.
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